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ABSTRACT 

The Cook Inlet beluga whale (CIBW) is an endangered whale found in waters off the state of 
Alaska that is protected under the U.S. Endangered Species Act.  The federal recovery plan 
estimates recovery costs will total $73 million (in 2013 dollars).  In this study, we use data from 
a stated preference discrete choice experiment (CE) study to estimate the aggregate benefits of 
recovering the CIBW and generally for improving its conservation status and reducing extinction 
risk. Estimated CE models account and test for utility scale heterogeneity, attribute non-
attendance, self-selection bias, and demographic effects.  Aggregation methods that differ in 
adjustments made to the mean household welfare and/or to the number of population units are 
compared by assessing their impact on the resulting aggregate (population-level) welfare 
estimates.  Alaska households are willing to pay between $34 million (95% CI of [$25 million, 
$44 million]) and $103 million ([$74 million, $131 million]) for full recovery of the CIBW, 
depending upon the model and aggregation assumptions.  While some of the state-level recovery 
value estimates are below the total cost of combined federal and state recovery actions, 
accounting for welfare benefits beyond the state of Alaska justifies recovery actions by the 
benefit-cost criterion. 
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Introduction 

The Cook Inlet beluga whale (CIBW) is a whale species found only in Cook Inlet, 

Alaska, USA. Its habitat is adjacent to Alaska’s largest city, Anchorage, which has over a 

quarter million people and is the state’s largest port as well as the center of the state’s commerce.  

The CIBW was listed as an endangered species under the Endangered Species Act (ESA) in 

2008 due to persistent population declines since the 1990s.  Recent assessments suggest there are 

only about 331 animals remaining, down from about 1,300 in 1979 (Goetz et al. 2023; Muto et 

al. 2021). In 2016, the National Marine Fisheries Service (NMFS), the U.S. federal agency 

charged with managing and conserving marine species, adopted a recovery plan for the species 

(NMFS 2016). 

The recovery plan identifies the anthropogenic and natural sources of current declines, 

outlines criteria for downlisting (improving from an endangered to a threatened status) and 

recovery (improving sufficiently to be delisted as a threatened or endangered species), and 

describes a set of recovery actions to take. The main sources of decline of ongoing concern 

include harmful noise from human activities, potential catastrophic events like oil spills and mass 

strandings, pathogens and disease, and habitat loss and degradation (NMFS 2016).  Importantly, 

the recovery plan delineates a 50-year comprehensive federal recovery strategy of adaptive 

research, monitoring, management, and public education and outreach that is estimated to 

cumulatively cost $73 million (in 2013 dollars). The primary policy question that we seek to 

answer is whether the public benefits of recovering the CIBW outweigh the costs of recovery. 

To answer this, we analyze stated preference (SP) discrete choice experiment (CE) data 

from a survey of Alaska households that collected information on attitudes and preferences for 

protecting the CIBW.  We generate and compare aggregate Alaska-level welfare estimates for 
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CIBW recovery from alternative estimation models and by applying several aggregation 

approaches. Numerous empirical SP models exist in the literature to control for potential biases 

or response anomalies in CE data with the intent of generating more valid and reliable estimates 

of economic values (Johnston et al. 2017).  Some modeling issues often accounted for in these 

empirical CE models include allowing for various forms of preference heterogeneity (Morey and 

Rossman 2003; Birol et al. 2006; Train 2009), controlling for utility scale heterogeneity 

(Lundhede et al. 2009; Fiebig et al. 2010; Olsen et al. 2011; Hess and Rose 2012) and sample 

selection bias (Cameron and DeShazo 2013; Bosworth, Cameron, and DeShazo 2015; Lewis et 

al. 2019), and accounting for choice heuristics like attribute non-attendance (ANA) (Hole 2011; 

Lew and Whitehead 2020).  The sensitivity of individual or household-level welfare estimates to 

these modeling decisions are generally the focus of inquiries in the literature.   

However, how these modeling decisions interact with or are offset by assumptions made 

in the aggregation process and the resulting effects on aggregate welfare are less explored.  In 

particular, a key decision in aggregation is determining the “market extent”--i.e., the population 

whose values are non-zero (Smith 1993; Loomis 2000).  Often, SP studies aggregating welfare 

do not assume the entire population should be included in the market extent.  Instead, they adjust 

downward the population to which the sample-based mean or median welfare estimate is applied, 

reflecting an implicit assumption that some portion of the population has a zero willingness-to-

pay (WTP) (Loomis 1987; Morrison 2000; Brouwer 2008).  One common, and conservative, 

approach is to scale the population downward to reflect the proportion of the overall contacted 

sample that responded to the survey; that is, to assume that the survey response rate mirrors the 

proportion of the population that has a non-zero WTP.  Morrison (2000) compared how several 

aggregation assumptions affected aggregate welfare estimates using a simple multinomial logit 

3 



 

 

 

CE model that allows for demographic interactions.  Unsurprisingly, he found that large 

differences can arise. 

While these aggregation assumptions about the relevant market extent have predictable 

first-order effects on aggregate welfare, it is unclear to what degree some modeling choices may 

contribute or offset these effects.  For example, Lew and Whitehead (2020) identify several 

empirical approaches used in ANA studies for welfare measurement that implicitly affect the 

proportion of the sample assumed to contribute to the calculation of welfare.  The extent to 

which accounting for ANA behavior impacts aggregate welfare has not been investigated. 

Johnston et al. (2017) recommend that “calculation of welfare measures for policy 

guidance should recognize potential effects of sample selection, preference heterogeneity, and 

the extent of the market” (p. 368).  To achieve this here, we compare aggregate welfare estimates 

of public values for CIBW recovery resulting from four CE estimation models embodying 

different assumptions about preference heterogeneity, utility scale differences, ANA, sample 

selection bias, and the role of demographics, and two market extent assumptions.  In addition to 

the expected result that aggregation assumptions can lead to starkly different aggregate values, 

we show that modeling assumptions can have qualitatively large effects on aggregate welfare of 

a similar order of magnitude as different assumptions about the market extent do.  In terms of the 

policy question about whether public benefits for species recovery outweigh the costs of 

recovery, we find that for the Alaska state population alone the benefits do not fully offset the 

costs in all cases. However, given the CIBW is a public resource of the United States, extending 

the public benefits beyond state borders, even under extremely conservative assumptions, 

enables the CIBW recovery program to pass the benefit-cost test. 
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In contrast to previous studies valuing CIBW recovery (Lew 2018, 2019), the emphasis 

here is on generating a population-level estimate of public WTP for protection of the species.  

Thus, it adds to the expanding knowledge of public values for threatened and endangered species 

protection (Martin-Lopez, Montes, and Benayas 2008; Richardson and Loomis 2009; Lew 2015).  

In so doing, the study also contributes to ongoing discussions of the benefit-cost ratios associated 

with recovery of endangered species in the United States.  For example, Moore et al. (2022) 

review the public benefits for species protection and compare them to the costs of recovery, 

finding that even under very restrictive assumptions the benefit-cost ratios for 34 of 36 

threatened and endangered species are greater than one. 

The Survey and Data 

Data were collected in a survey of the public’s preferences and values for protecting the 

CIBW.1  The survey was sponsored by NMFS and respondents were informed of this in all 

mailings and in the survey itself.  Focus group input suggested that this enhanced the credibility 

of the survey and contributed to the belief that survey responses would be consequential. 

The mail survey included information and questions about the CIBW, other threatened 

and endangered U.S. marine mammals, past and current population trends and management 

actions, and potential future actions to protect and recover it, as well as questions about the 

individual (e.g., socio-demographic questions).  After being presented with a budget reminder 

and cheap talk script to reduce the potential for hypothetical bias (Cummings and Taylor 1999), 

respondents were presented with four CE questions.  Each asks the respondent to choose their 

1 Details not provided here about the survey design, pretesting activities, and survey implementation are available in 

two other studies (Lew 2018, 2019), which each used a different subset of the data and explored other issues. 

5 



 

 

                                                 
 

 
  

   
   

  

 
 

 
  

  

   

most preferred and least preferred option from among three alternatives (Alternatives A, B, and 

C) (see figure A1 in appendix).2  The choice alternatives differ in the results of protection actions 

on the CIBW and in their costs. Alternative A in each CE question maintains the status quo, 

which results in the species remaining endangered with a 25% risk of extinction by 2112, and 

would not result in any added costs to the household.  Alternatives B and C do more to protect 

the CIBW and lead to improvements in extinction risk and ESA listing status but result in an 

added cost to the household. 

The payment vehicle used in the CE questions is a combination of added costs to the 

household from increases in costs of goods and services and federal taxes.3  Three different 

payment schedules are presented in the study, differentiated by the number of years the 

household would pay the added costs (1, 5, and 10 years).  For the 1-year payment survey 

version, the added cost for each alternative in the CE questions is presented as a lump sum 

payment.  Respondents would not pay anything more beyond the single one-time payment.  In 

the 5- and 10-year payment survey versions, the added cost is presented as an annual payment 

for the household that would occur for the stated number of years. 

2 Note that the rank choice (best-worst) format was employed in numerous CE studies in economics (e.g., Scarpa et 
al. 2011; Lancsar et al. 2013) around the time of this survey due in part to advantages the format has for estimating 
efficient model parameters.  However, along with other SP question formats, it has since been used less after 
concerns were raised about incentive compatibility properties of SP question formats (Carson and Groves 2007; 
Vossler et al. 2012).  In particular, Vossler et al. (2012) showed that a CE design exhibiting a particular set of 
properties ensure it is incentive compatible.  Among those properties are that the choice design uses binary referenda 
between one alternative and the status quo, has independence of choice sets, has at most one alternative from the 
universe presented being implemented, and is viewed as consequential by respondents.  The rank choice format used 
here does not have all of these features.  Thus, it is one that cannot be assured to be fully incentive compatible, 
despite having features that support its consequentiality.  As a result, there is the potential for strategic bias in the 
responses.
3 Focus group and cognitive interview testing suggested people generally assumed the federal tax was certain and 

binding and would make up most, if not all, of the “added cost” to their household, which reduces but does not 
eliminate concerns about this payment vehicle not being fully “fixed and unmalleable” (Johnston et al. 2017). 
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For each payment schedule treatment, there are 16 survey versions that differ in the 

attribute levels (population statuses, risk of extinction, and costs) seen by respondents.  Attribute 

levels for the conservation status under Alternatives B and C are--in decreasing order of 

endangerment--“endangered,” “threatened,” or “recovered”.4  There are ten extinction risk levels 

that could be achieved under Alternatives B and C ranging from “less than 1%” to 22%, which is 

less than the 25% extinction risk associated with Alternative A, the status quo program.  The 

experimental design also included non-zero added cost amounts for Alternatives B and C ranging 

from $10 to $350.  The final experimental design was selected based on a D-efficiency criterion.5 

The resulting 48 survey versions (16 versions  3 payment treatments) were distributed 

randomly and in equal numbers in the mail-out sample.  

The survey was fielded in 2013 to 4,200 randomly drawn Alaska households.6  The 

survey was implemented using a mixed mode approach (Dillman et al. 2014) with five contacts:  

an advance letter, the initial mailing with a $5 monetary incentive, a postcard reminder, a follow-

up telephone call, and a second full mailing.  In total, 1,747 completed surveys were returned. 

The overall response rate, excluding undeliverables, was 44.4%.7  The data used for the analysis 

4 “Recovery” is defined as reducing the extinction risk to a near-zero level and removing the species from the ESA 

list of threatened and endangered species.  
5 A two-step process was used to select the experimental design used in the study. First, a program developed in 

GAUSS selected the 20 most D-efficient experimental designs based on a main effects utility specification from 
among 100,000 randomly drawn candidate experimental design combinations that excluded fully dominating 
choices.  Then a series of Monte Carlo simulations were done to evaluate how well each of the 20 designs performed 
when analyzed with a main-effects rank-ordered multinomial logit model using pseudo-data constructed from 
several sets of assumed true utility parameters.  The designs were evaluated in terms of their ability to estimate the 
true utility parameters, and the best performing one was selected for use. 
6 Rural households were oversampled (50% of the mail-out sample), so the estimation models presented here are 

sample-weighted.  The sample was drawn from the Marketing Systems Group’s address-based database of U.S. 
households, which has nearly 100% coverage of households in Alaska since it is based on the U.S. Postal Services’ 
Computerized Delivery Sequence File.  The survey implementation was carried out by Ipsos. 
7 Response rates varied from 33% to 55% over the 48 survey versions.  The response rate excluding undeliverables 

also excludes those who were deceased or moved out of Alaska (273 total undeliverables). 
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consist of 1,316 respondents.8  This excludes individuals who did not answer any of the choice 

questions or indicated the same choice for “best” and “worst” option (134) and respondents who 

strongly rejected the payment vehicle identified through their responses to a series of Likert 

questions that followed the CE questions (297).   

Table 1 presents summary statistics of several characteristics of the estimation sample.  

The sample is statistically similar to the State of Alaska’s population in terms of gender, 

proportion of full-time workers and Alaska Natives/American Indians, and household income.  

However, relative to the population, the sample is older, more educated, and consists of a higher 

proportion of white respondents and homeowners. 

Analyzing Discrete Choice Experiment Responses 

A variety of mixed logit models that account for preference heterogeneity and the ordered 

and panel nature of the data are estimated.  Extensions of a base panel rank-ordered model are 

developed to evaluate and control for several response anomalies and to allow for aggregation 

adjustments.  In particular, we estimate models that allow for differences in utility scale due to 

varying levels of confidence or certainty in responses (Lundhede et al. 2009), for choice heuristic 

behavior as reflected in attribute non-attendance behavior (Lew and Whitehead 2020), and for the 

effects of sample selectivity (Bosworth, Cameron, and DeShazo 2015; Lewis et al. 2019) and 

demographics on choice behavior (Morey and Rossman 2003; Birol et al. 2006).  Given the 

different payment schedule treatments (one, five, and ten years), an endogenous discounting model 

(Bond et al. 2009; Lew 2018; Vasquez-Lavin et al. 2021) is employed that allows for estimation 

of an implied discount rate. 

8 719 from urban areas and 597 from rural areas. 
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The random utility maximization (RUM) models assume each of the J = 3 choice 

alternatives (indexed by j) in each CE question has a utility Uj that consists of a deterministic (Vj) 

and stochastic (εj) component.  Vj is linear in the present value of the annual cost (PVCj) and non-

cost attributes (xj) of choice alternative j. Thus, for a given individual, the utility of the jth choice 

alternative is 

Uj = Vj + εj = β�xj ₋ γ�PVCj + εj ,    (1)  

where β and γ are parameters to be estimated, with γ > 0 to conform with theory and ensure finite 

moments of the WTP (Carson and Czajkowski 2019).  Assuming equal-sized annual costs of size 

Cj over T time periods, the PVCj can be represented by the product of a cumulative discount factor 

(ψ) and Cj; i.e., PVCj = Cj∙ψ. Under exponential discounting, ψ is defined as a function of the 

discount rate (r): 

  ψ = ∑  

 

 = 1  ∙ 1   . (2) 

Thus, equation 1 becomes 

Uj = β�xj - γ�Cj�ψ + εj .      (3)  

Assuming εj follows a Gumbel distribution, the probability an individual chooses the jth 

alternative as best takes the familiar multinomial logit form: 

∙
Pj = Pr[j is best] =  ,      (4)  

∑ ∙  

where μ is the scale factor that is inversely related to the variance, which is π2/6μ2 for the 

Gumbel distribution (Swait and Louviere 1993).   

The scale factor can be allowed to vary over individuals either stochastically (Fiebig et al. 

2010; Hess and Rose 2012) or systematically (Lundhede et al. 2009; Davis, Burton, and Kragt 
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2019). In this study, we allow the scale factor to differ across individual responses to a stated 

certainty question that directly follows the CE questions and assesses how confident respondents 

are in their CE responses (Lundhede et al. 2009).9  Responses to the certainty question are 

measured on a 5-point scale, from 1 = not at all confident to 5 = extremely confident.  The 

sample mean was 3.5.  In the model, we specify the scale parameter as a function of two dummy 

variables, one indicating a lower confidence response between 1 and 3 (CONF13) and the other 

indicating a higher confidence response of 4 (CONF4) on the 5-point scale; i.e.,  μ = 

exp(υ13∙CONF13 + υ4∙CONF4), where υ13 and υ4 are parameters to be estimated.  Since this 

specification implies the baseline confidence level is extremely confident, which one would 

expect to have the lowest utility variance, our expectation is that υ13 and υ4 are negatively signed, 

which implies a smaller scale parameter and thus larger variance. 

Respondents are asked to choose both the best (most preferred) alternative and the worst 

(least preferred) alternative from among the J (=3) alternatives. Thus, the responses provide a 

full rank-ordered preference ordering. Denote the three choice alternatives as j, k, and l (where j, 

k, and l � {A, B, C}). If j was selected as the most preferred alternative and l was selected as 

worst, the implied preference order of j as best, k as second best, and l as worst (denoted j > k > 

l) can be represented as a joint probability equal to the product of the unconditional probability 

of j being best and the conditional probability of k being second best if j is best: 

Pr[j > k > l] = πjkl = Pj × Pk|j ,        (5)  

9 The specific question wording is provided in Appendix Figure A2. 
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∙
where Pk|j = Pr[k is second best|j is best] = , j,m,k,l = {A, B, C}. This is the rank-

∑  ∙  

ordered conditional logit model (Chapman and Staelin 1982). 

The joint probability of observing the sequence of choices an individual makes is the 

product of individual choice probabilities under the assumption that the Gumbel errors are 

independent across the repeated choices.  Letting rq equal the rank ordering in the qth choice 

question, the joint probability of observing the Q = 4 rank orderings is represented as 

Pr[r1, r2, r3, r4] = 𝜋 ∙ 𝜋
 
∙ 𝜋

 
∙ 𝜋

 
,     (6)  

where 𝜋  (for q = 1, 2, 3, 4) is defined by Equation 5. 

To account for unobserved preference heterogeneity, the random parameters logit, or 

mixed logit (MXL), model is used.  The parameters β in Equation 3 (i.e., the non-cost 

parameters) are allowed to be individual-specific and assumed to follow a multivariate normal 

distribution (with mean vector �̅� and variance-covariance matrix Σ). In addition, the cost 

parameter γ is assumed to be randomly distributed over a symmetric positively-constrained 

triangular distribution (Hensher and Greene 2003), which is defined by a single hyper-parameter, 

 (=ln(γ)).10 

In the MXL model formulation, the individual’s joint probability of observing the rank 

orderings {r1, r2, r3, r4} over the Q = 4 choice questions is evaluated over the assumed random 

10 Allowing the cost parameter (γ in equation 3) to be normally distributed led to model results that suggest a 
significant percentage of parameter values in the distribution are in the negative orthant, which is counter to theory. 
We imposed consistency with demand theory by restricting the cost parameter to be positive, which meant 
estimating models that specify the cost parameter to be fixed, lognormally distributed, or triangularly distributed.  
Since the lognormally-distributed cost parameter models failed to converge, we restrict ourselves to the triangularly 
distributed cost parameter models (and fixed cost parameter model results are available upon request). 
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parameter joint distribution f(Ω), where Ω (={�̅�, Σ, }) are the hyper-parameters defining the 

marginal distributions of the random parameters: 

Pr[r1, r2, r3, r4] =  ∏  𝜋 𝛽, 𝛾  ∙ 𝑓 𝛺 𝑑Ω, (7) 

for all j, k, and l � {A, B, C}. 

To control for attribute non-attendance, an inferred ANA approach is employed (Lew and 

Whitehead 2020). Specifically, we adopt the endogenous attribute attendance model of Hole 

(2011) to allow for ANA behavior. Let As be the set of attributes (out of K total attributes) to 

which an individual pays attention in the CE questions.  The probability of observing an attribute 

κ (κ � As) being paid attention to is specified as a logit probability: 

Pr[κ] = exp(θκ)/[1+exp(θκ)],     (8)  

where θκ is an attribute-specific constant. The probability of observing As being paid attention to 

is the product of the binomial logit probabilities in equation 8 across all attributes: 

 
  

Pr[As] = 𝐻
 
= ∏ ∈   

  ∏ ∉   
. (9) 

This assumes independence of the individual attribute attendance probabilities.  Note that there 

are S = 2K possible combinations of attributes being attended to, implying 2K possible patterns of 

attribute attendance. The ANA version of the MXL model can be cast in a latent class 

specification: 

Pr[r1, r2, r3, r4] = ∑ 𝐻
 
∏  𝜋 𝛽 𝑓 𝛺 𝑑Ω, (10) 

where βAs is the vector of all parameters ( and γ) with zeros imposed for attributes that are not 

included in As, so that the attributes do not contribute to utility (they are zeroed out since they are 

ignored by the respondent). 

These panel rank-ordered MXL models are estimated using maximum simulated 

likelihood. The likelihood function for the MXL model is approximated through simulation by 
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taking R = 2,000 Sobol draws from a multivariate normal distribution and symmetric positive-

constrained triangular distribution and evaluating the conditional joint choice probabilities at 

each draw. The multivariate normal distribution allows for correlation between the random 

parameters, . The symmetric triangular distributed cost parameter is assumed to be independent 

of the other random parameters.  The triangular distribution is described by a single parameter, 

, representing the spread (and mean and mode equal to /2) with a lower bound of 0 (see 

appendix for details).  The simulated joint probability is the mean over the R draws.11 

Model Specifications 

The four estimation models presented in this analysis are variants of the panel rank-

ordered MXL model described above.  They differ in whether or not they account for sample 

selection bias, ANA, utility scale differences due to differences in response certainty, and 

demographic interaction effects.  All of the models assume utility of the non-status quo 

alternatives (Alternatives B and C) is a function of the logged reduced risk of extinction 

(ln(RR+1)), the ESA listing status as captured through two dummy variables --one for a 

threatened status (THR) and one for a recovered status (REC)--and the present value of cost for 

the alternative (PVC). The logged extinction risk allows for utility to increase with extinction 

risk reductions at a decreasing rate.12  The separate ESA listing status dummies allow for 

marginal utility for status improvements beyond reductions in extinction risk.  The status quo 

alternative is represented in the model as an alternative specific constant (SQ).   

11 The simulated maximum likelihood procedure was programmed in GAUSS version 22.  Halton and Sobol quasi-

random draws of varying sizes (500 to 2,000) were evaluated and model parameter stability supported use of 2,000 
Sobol draws. 
12 Other model specifications that are quadratic in RR had similar model fit and statistical significance but allowed 
for negative marginal utility for large extinction risk reductions.  Here we impose that the utility associated with 
increases in RR are non-negative. 
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In the first model, the MXL-Base model, there are no considerations for sample selection 

bias, attribute non-attendance, utility scale differences, or demographic interaction effects.  The 

second model, the MXL-Adj model, controls for two potential issues of concern:  ANA and 

utility scale differences. Specifically, the MXL-Adj model applies the endogenous attribute 

attendance model to account for ANA behavior and controls for utility scale differences due to 

differences in respondent’s response certainty, as described in the previous section.  Attribute 

non-attendance behavior is assumed to be possible in relation to the reduced extinction risk 

(ln(RR+1)) and ESA conservation status (THR and REC) attributes.13  The remaining two 

models build on the MXL-Adj model by controlling for sample selection bias (MXL-Sbias) or by 

controlling for potential demographic effects on utility (MXL-Demo) in addition to accounting 

for ANA behavior and utility scale differences.   

The MXL-Sbias model follows the approach employed by Cameron and DeShazo (2013), 

Bosworth, Cameron, and DeShazo (2015), and Lewis et al. (2019) to control for sample selection 

bias. The approach involves using individual-level predictions of the deviation from the mean 

survey response propensity to control for deviations in the utility parameters attributable to 

systematic sample selection effects.  This is implemented in three steps:  First, we model an 

individual’s propensity to respond to the survey as a function of observable characteristics.  To 

facilitate this, auxiliary data about all households in the mail-out sample were procured by the 

survey vendor, Ipsos. The auxiliary data included variables primarily related to the type and 

location of a household’s mailing address and demographics from Census data.  Specifically, the 

response propensity logit model used as covariates dummy variables for the presence of a post 

office box address, whether the household lived in a high-rise building, if the household lived in 

13Models that also included cost attribute non-attendance were estimated but not used since likelihood ratio tests 
rejected the cost attribute being ignored. 

14 

https://attributes.13


 

   

 

 

                                                 
 

an area adjacent to the Cook Inlet, if it was a single-person household, and whether the 

household was located in a low (< $30K/year) or high (>$150K/year) income area.  Second, the 

estimated response propensity model (appendix table A1) is then used to generate individual-

level predicted response propensities. Third, a response propensity deviation (RPDEV) variable, 

which is the individual-level predicted response propensity subtracted from the mean response 

propensity, is interacted with the SQ and REC variables in the CE model (see Table 1).14 

The fourth and final model we present is the MXL-Demo model, which allows for the 

interaction of demographic variables with the ln(RR+1), THR, and REC variables.  Although 

specifications with other demographic variables were tried, only LOWEDUC (a dummy variable 

for whether individual has less than a high school diploma or equivalent) was consistently 

statistically significant and was therefore the one used here.  This model allows for welfare 

estimates to be adjusted to reflect differences in demographics between the sample and 

population. 

Welfare and Aggregation Assumptions 

The four models described above were selected to be consistent with aggregation 

approaches that embody alternative assumptions about (1) the similarity in preferences between 

sample respondents and non-respondents; (2) differences between the sample and the population 

(POP); and (3) the proportion of the total population of interest (PP) to which the sample-based 

mean WTP is applied (see Figure 1).  When respondents and non-respondents have different 

underlying preferences and auxiliary data is available to assess differences between them, sample 

selection models can be used to deal with non-random non-response.  The sample-based utility 

14 RPDEV interactions with other utility variables were consistently not statistically significant. 
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models can incorporate features that allow for adjusting the sample mean WTP to account for the 

underlying sample selection bias, as well as potential response biases or behaviors (ANA and 

utility scale effects) as described above for MXL-Sbias.  In this case, the sample mean WTP 

calculated from a sample selection bias-corrected model must be applied to the full population, 

POP (such that PP=1.0). If instead respondents and non-respondents are assumed to have the 

same preferences (i.e., an absence of selection bias), then the sample mean WTP is assumed 

representative of some or all of the population of interest.  Thus, sample mean WTP estimates 

derived from MXL-Base and MXL-Adj can be applied to the portion of the population believed 

to be in the market extent. Utility scale differences and attribute non-attendance can be 

controlled for (MXL-Adj) to account for potential response biases prior to aggregation.  

Additionally, if preferences are believed to systematically differ with demographics that differ 

between the sample and population, then sample mean WTP can be adjusted by using 

population-level demographics in a model that accounts for these effects (MXL-Demo).  When 

this demographic-adjustment approach is undertaken, the assumption is that the sample mean can 

be applied to the entire population (PP = 1). 

For the initial aggregation, we define POP to be all households in the state of Alaska, 

USA, for the year corresponding to when the survey was conducted.  The 2013 American 

Community Survey 5-year estimate of the number of households in Alaska is 251,899.  The most 

recent estimate is not much larger (253,346)15, suggesting that the growth in households in 

Alaska over the last several years is fairly level (less than a 0.6% change).  When assuming only 

a proportion of the full population should be in the market extent in welfare aggregation, we 

define PP as the percentage of the mail-out sample (minus undeliverables) that was used to 

15 See https://www.census.gov/quickfacts/AK. 
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estimate the models; PP= 1316/2927 = 33.5%.  This assumption is more conservative than some 

studies that use the unadjusted survey response rate (e.g., Morrison 2000).  It assumes that the 

same proportion of respondents who did not respond to the choice questions (item respondents) 

and those who rejected the payment vehicle, and thus were not used in model estimation, exists 

in the population and should not have the estimated welfare applied to them. 

For the MXL-Base model described above, the expected household willingness-to-pay, 

E[WTP], resulting from a change is 

E[WTP] = (1/)(V1 – V0) f(Ω)d Ω, (11) 

where  is the cost parameter, V0 is the conditional indirect utility evaluated at the original (status 

quo) levels, and V1 is the conditional indirect utility under the improved state of the world.  

Given V0 and V1 are functions of random parameters, E[WTP] is calculated over the distribution 

of parameters in parallel fashion to the simulation-based estimation procedure (with 2,000 Sobol 

parameter vector draws).  Note that since the utility is a function of the present value of costs, 

E[WTP] represents the present value of a household’s willingness to pay. 

For all other models, ANA must be accounted for in the welfare calculation.  To this end, 

we propose an expected weighted average WTP: 

E[WTP] =  Σs [Pr[As]  (1/)(V1(βAs) – V0(βAs))] f(Ω)dΩ, (12) 

where Pr[As] is the probability of observing the sth (s = 1,…,2K) combination of attributes being 

paid attention to as defined by Equation 9, and V0(βAs) and V1(βAs) are the corresponding 
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conditional indirect utility specifications with parameter vectors that reflect the associated 

attribute non-attendance pattern. This welfare measure explicitly takes into consideration the 

probability of each specific pattern of attribute non-attendance behavior (including full 

attendance). For the MXL-Sbias model, the effect of the response propensity deviation is zeroed 

out in calculating welfare.  For the MXL-Demo model, E[WTP] is calculated assuming 

population-level demographics from Census data (LOWEDUC = 0.3845).  95% confidence 

intervals are constructed using the simulation approach of Krinsky and Robb (1986) using 1,000 

iterations. 

Estimation Results 

Table 2 presents the estimated means of the distributions of the non-cost random 

parameters, along with other estimated model parameters and model fit statistics.  However, it 

excludes the Choleski matrix elements associated with the multivariate normally-distributed 

random parameters (reported in Appendix Table A-2).  The signs and statistical significance of 

the estimated mean parameters for all four models conform to our expectations.  Logged 

reduction in extinction risk (ln(RR+1)), improving the ESA status from endangered to threatened 

(THR), and improving the status to recovered (REC) are all positively related to utility, all else 

equal, and are statistically significant at conventional levels.  In the MXL-Demo model, 

demographic interactions with the low educational attainment dummy variable (LOWEDUC) 

were statistically significant in two cases:  when interacted with extinction risk reductions 

(ln(RR+1)) and with the THR dummy variable.  In both cases, the interaction effect was negative 

and statistically different from zero (at least at the 10% level of significance) and reduced the net 

positive utility effect from risk reductions and achieving a threatened ESA status, suggesting that 
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all else equal individuals with lower education have a lower utility for CIBW improvements than 

others. In the MXL-Sbias model, the parameters on the RPDEV interaction with SQ and REC 

were both large, negative, and statistically significant. This suggests a sample selection bias in 

the marginal utility of recovering the CIBW, with recovery having on average a stronger positive 

effect on utility among respondents than the broader population.  It also suggests a lesser 

propensity among respondents to choose the status quo alternative relative to non-respondents.   

In all models, the symmetric triangularly-distributed cost parameter, which is constrained 

to conform to theoretical expectations, is statistically significant, and the implied discount rate 

individuals apply to future payments is large and statistically significant.  The implied 

exponential discount rates across the four models were generally large, ranging from a low of 

428% (exp(1.46)  4.28) for the MXL-Sbias model to a high of 648% (exp(1.87)  6.48) for the 

MXL-Demo model.  These implied discount rate estimates suggest individuals heavily discount 

future payments. The mean SQ parameter in all models is negative and statistically significant, 

indicating a preference by respondents for choosing alternatives that enhance protection for the 

CIBW rather than the status quo.  The likelihood ratio index (LRI), a pseudo-R2 value, is at least 

0.372 for the four models indicating the overall models are statistically significant. 

Appendix Table A-2 presents the estimated Choleski matrix parameters for the variance-

covariance matrix of the normally-distributed random parameters.  For all models, the diagonal 

Choleski matrix parameters are all statistically significant and larger in magnitude relative to the 

corresponding mean parameters, thus indicating the presence of preference heterogeneity.  

However, the off-diagonal Choleski matrix parameters are all positive, with most statistically 

different from zero. As Mariel and Artabe (2020) have shown, one can only interpret negative 

off-diagonal parameters because of scale issues.  Thus, the results suggest the presence of non-
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systematic preference heterogeneity but is inconclusive about whether there is, and the direction 

of, correlation across random parameters. 

Controlling for ANA and utility scale effects from response uncertainty improves model 

fit, as suggested by the higher LRI (0.375) and lower Akaike Information Criterion (AIC) and 

Bayes Information Criterion (BIC) for the MXL-Adj model relative to the MXL-Base model (as 

well as direct likelihood ratio [LR] tests that were done).  Conforming to our prior expectations, 

the CONF13 and CONF4 parameters in the MXL-Adj, MXL-Sbias, and MXL-Demo models 

were negative and statistically different from zero, indicating larger utility variances for 

respondents who are less confident in their responses to the CE questions.  Attribute non-

attendance was present in these models, but only in relation to extinction risk reduction.  For 

extinction risk, the probability of attendance was 54.3% (95% CI of [47.6%, 60,3%]) in the 

MXL-Adj model, 56.7% ([50.0%, 63.5%]) in the MXL-Sbias model, and 83.3% ([75.6%, 

89.3%]) in the MXL-Demo model.  The statistical insignificance of the estimated ANA 

parameters related to ESA status in these models (95% CIs of [~0.1%, 100%]) indicates the 

inability of these models to identify ANA behavior in relation to ESA status improvements.16 

For each of the MXL-Adj, MXL-Sbias, and MXL-Demo, LR tests reject the null hypotheses of 

no ANA (p < 0.1) and equal utility variance across certainty responses (p < 0.001), both 

separately and jointly. LR tests also reject the separate null hypotheses of no sample selection 

bias (p < 0.001) and no demographic interactions (p < 0.001). 

Welfare Results 

16 Fixed parameter conditional logit specifications of these models indicated statistical significance of ANA 
parameters for both ESA status and extinction risk reductions, but the lack of significance in the random parameters 
specifications highlights the potential for ANA to be confounded with preference heterogeneity. 
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Table 3 reports estimates of the household-level mean present value of WTP associated 

with full recovery (REC = 1, THR = 0, and RR = 25%) and the present value of marginal WTP 

associated with reducing extinction risk by one percentage point and improving the ESA status to 

threatened and to recovered.  All WTP estimates are statistically different from zero except those 

for the marginal value of ESA status changes, regardless of the estimation model.  The estimated 

mean household present value of WTP for full recovery ranged from a low of $221 (95% CI of 

[$117, $322]) for the MXL-Demo model to a high of $409 ([$295, $520]) for the MXL-Adj 

model. The full recovery value estimate for the MXL-Base model is very similar to the MXL-

Demo model estimate ($228 with a 95% CI of [$112, $339]), while the MXL-Sbias model’s 

estimate is more similar to the MXL-Demo model’s ($395 [$280, $511]).  A similar pattern 

emerges for the marginal WTP of a one percentage point extinction risk reduction, with 

household-level value estimates ranging from $49 [$29, $68] for the MXL-Demo model to $88 

[$65, $113] for the MXL-Adj model.  The estimated marginal value of a status change to a 

threatened level is statistically different from zero for the MXL-Base model ($35 [$14, $56]) and 

the MXL-Sbias model ($26 [$0.25, $50]), but not for the other two models at the 5% level.  

None of the marginal values for a recovered status change are statistically different from zero at 

the 5% level. 

Using a confidence interval-based test procedure (see appendix), we assess whether there 

are statistical differences between WTP estimates from the four models.  We find that full 

recovery household-level values for the MXL-Base and MXL-Demo are statistically the same, 

and those from the MXL-Adj and MXL-Sbias models are statistically the same (at the 5% level).  

However, we can reject the equality of full recovery values between the MXL-Base (or MXL-

Demo) and MXL-Adj (or MXL-Sbias).  A parallel set of outcomes occur in tests involving the 
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marginal values of extinction risk reductions.  In contrast, for the marginal values associated with 

ESA status changes, tests for a given marginal change (in THR or REC) suggest that there are no 

statistical differences between any estimates of the four models at the 5% level. 

Table 4 presents the aggregate (population-level) WTP estimates for full recovery for 

each of the four models assuming the mean household-level WTP is applied to the full 

population (second column; PP=1.0) or to a proportion of the population (third column; PP = 

0.335). The full population aggregate WTP estimates ranged from $55.7 million [$29.5M, 

$81.1M] for the MXL-Demo model to $103.0 million [$74.4M, $99.4M] for the MXL-Adj 

model. The aggregate WTP estimates applied to a proportion of the population is reported for 

the models that are consistent with such an approach (the MXL-Base and MXL-Adj models).  

For these models, the aggregate WTP is lower of course—$19.2 million [$9.5M, $28.6M] for the 

MXL-Base model and $34.5 million [$24.9M, $43.9M] for the MXL-Adj model. 

Net Benefits of CIBW Recovery 

We evaluate whether the comprehensive recovery efforts outlined in the 2016 NMFS 

CIBW recovery plan pass the benefit-cost test (net benefits > 0) by comparing the aggregate 

WTP estimates in Table 4 with the aggregate cost of recovery programs of $73 million.  For 

these benefit-cost tests, we do not use the MXL-Base model aggregate WTP values since the 

other models perform better and are preferred.  This leaves four aggregate WTP values to be 

evaluated. Two of the aggregate WTP values, for the MXL-Adj and MXL-Sbias models that 

assume PP=1, exceed the $73 million total recovery costs, suggesting the net social benefits of 

the programs are positive.17  However, the other two aggregate WTP values, for the MXL-Adj 

17 The 95% and 90% CIs for these aggregate WTP value estimates, respectively, do not contain the aggregate 
recovery cost amount, suggesting the costs are statistically lower than benefits in these cases.  
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model assuming PP=0.335 and for the MXL-Demo model, are lower than the aggregate costs, 

although the total recovery cost amount is within the 95% CI of the MXL-Demo aggregate value.  

Thus, if one were to limit the evaluation to the state level, there is evidence in these two cases 

that the net benefits of CIBW recovery are not positive. 

Recall, however, that the aggregate WTP values in Table 4 represent the total public 

benefits to Alaska households but that the CIBW is a species protected in the interest of the U.S. 

public. Thus, comparing the Table 4 aggregate benefits to the recovery costs is a very 

conservative benefit-cost test that limits the market extent to the population that is nearest the 

CIBW (i.e., those in the State of Alaska), and ignores values for CIBW recovery held by those 

living in other U.S. states. 

Expanding WTP estimates beyond the sampled population can be viewed as a type of 

benefits transfer. The differing socio-demographics between the larger U.S. population and 

Alaska population may influence differences in WTP, not to mention attitudinal differences 

toward the CIBW and endangered species protection.  Moreover, research into the spatial 

distribution of non-consumptive SP values like those in this study suggests the likelihood of 

spatially disperse but clustered areas of high and low values across the market extent (Johnston 

et al. 2015; Czajkowski et al. 2017), which underscores the dangers of applying a distance decay 

rule to any extrapolated values (Glenk et al. 2020).  Nevertheless, past research on public values 

for endangered species protection derived from U.S. national samples (Wallmo and Lew 2012, 

2016) indicates the market extent likely extends beyond the Alaska state border and should be 

accounted for when evaluating net benefits of state and federal recovery efforts.   

Our objective is not to accurately estimate national level benefits of CIBW recovery, 

which would require a rigorous benefits transfer approach (Johnston et al. 2021).  Instead, our 
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aim is to assess whether the CIBW recovery efforts have net positive economic benefits.  To 

conservatively account for U.S. public values for CIBW recovery, we employ a simple approach 

that extends estimated household-level WTP to the entire United States.  To do this, we adopt a 

strong, yet conservative, assumption about what proportion of each non-Alaska U.S. state’s 

households has a zero WTP for CIBW recovery (99.0%) and what proportion has a WTP for 

CIBW recovery equal to the mean household WTP value that we estimated for Alaska 

households (1.0%). Under the assumption that 1% of households in each state outside Alaska 

have a WTP equal to that estimated in a given model, Figure 2 displays the cumulative present 

value of aggregate WTP as one includes welfare benefits from states moving farther away from 

Alaska. Two cumulative WTP lines are shown:  one using the MXL-Adj model’s household 

WTP estimate assuming PP=0.335 within Alaska and the other using the MXL-Demo model’s 

household WTP with PP=1.0. The other two aggregate WTP values already lead to net benefits 

being positive, and so are excluded from this illustration.  Each of the cumulative WTP lines in 

Figure 2 begins at the corresponding aggregate WTP levels for Alaska from Table 4, then 

increases as WTP from nearby states (Washington state, then Oregon, and so on) are added. 

In both cases, the cumulative WTP lines cross the $73 million total recovery cost level 

after the eight closest (by geographic centroid) states have been accounted for, then continue 

increasing as states farther away from Alaska are added.  This simple approach adopts a very 

conservative assumption about WTP in non-Alaska U.S. states, yet clearly shows that accounting 

for public benefits outside of Alaska leads to all models passing the benefit-cost test. 

Discussion and Concluding Remarks 
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Mean household values for CIBW recovery were found to be between $221 [$117, $322] 

and $409 [$295, $520] and can be compared to other value estimates for recovering other 

threatened and endangered whale species in the country.  Wallmo and Lew (2016) estimated 

U.S. household WTP for the recovery of the then-endangered humpback whale and endangered 

Southern Resident killer whale.  For these species, the estimated mean annual household WTP 

values were $65 (2013 dollars, 95% CI of [$61-$69]) and $90 ([$84, $95]), respectively.  

Additionally, Wallmo and Lew (2012) estimated similar mean annual U.S. household WTP 

values for recovery of both the North Atlantic ($77 [$72, $81]) and North Pacific right whales 

($75 [$70, $79]), both of which are also endangered. 

To compare these with our results, we convert the present value of WTP estimates for 

CIBW recovery to equivalent annual payments assuming a 7% discount rate, a rate commonly 

used in federal BCA analyses (OMB Circular A-9418), and a 10-year planning horizon to match 

the one implicit in the CE questions used in the other studies.  The equivalent annual mean 

household WTP for CIBW recovery ranges from $30 [$16, $43] and $54 [$39, $69], which are 

statistically lower than those for both right whales and the Southern Resident killer whale.  In the 

humpback whale case, we cannot reject the null hypothesis of the recovery value being the same.   

Regardless, the finding of significantly lower recovery values for the CIBW than three 

other U.S. endangered whale species is noteworthy. This difference could reflect differences in 

the general preferences of the study population in this study (Alaska households) versus those of 

the broader U.S. population for endangered species recovery used in these other studies, but they 

may also reflect differences in CE modeling decisions used in these studies.  At the same time, 

there is evidence that recovery values differ across species (Wallmo and Lew 2012), suggesting 

18 Available at: https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/a94/a094.pdf 
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CIBW recovery values may just be lower.  A more formal exploration of this is left for future 

research. 

One of the objectives of this study was to explore whether CE modeling decisions impact 

aggregate WTP estimates at a level similar to how decisions about the market extent do.  For 

this, we began with a panel rank-ordered mixed logit model as a base model, then estimated three 

additional models that all account for ANA behavior and utility scale differences reflecting 

respondent certainty differences.  Two of those models also, separately, embody assumptions 

about whether there are utility differences between the sample and population (sample selection 

bias) and utility differences arising from demographics (systematic preference heterogeneity).  

Accounting for only ANA and utility scale differences (MXL-Adj model) led to almost a 

doubling of the household and aggregate WTP for full recovery relative to those corresponding 

to the baseline model (MXL-Base).  This difference is similar in magnitude to the effect of 

assuming only a portion of the population has a non-zero WTP, as is assumed in many 

aggregation studies (Morrison 2000; Birol et al. 2006; Brouwer 2008).  When additionally 

accounting for educational attainment differences between the sample and population in the 

demographic-interactions model (MXL-Demo), estimated WTP values were similar to those of 

the base model.  The model that instead adjusts for sample selection bias in addition to ANA and 

utility scale differences (MXL-Sbias) yielded similar welfare estimates to the ANA and scale 

effects model (MXL-Adj).  These findings suggest that modeling decisions in this case do have 

fairly large impacts on aggregate welfare. 

A potential limitation of using the demographic-interactions model in aggregation of 

household WTP can occur when there is a mismatch, or at least imperfect information, on the 

population level for the corresponding demographic variable(s) used in the model.  For example, 
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the final MXL-Demo model interacted attributes with an education dummy that reflected the 

educational attainment for the respondent, assumed to be the household’s decision-maker.  As 

there was no Census-level information on the distribution of educational attainment for 

household decision-makers, we used educational attainment for adults (18 and older) in the 

population. This discrepancy points to a potential source for bias, but also highlights the need to 

further explore the relationship between individual and household WTP (Bateman and Munro 

2009; Lindjhem and Navrud 2009) and the implications of using demographic-adjusted WTP to 

generate aggregate welfare. Moreover, it points more generally to the importance of modeling 

decisions on aggregation. 

Another objective of this work was to evaluate whether public benefits outweigh the 

costs of recovery for the CIBW.  For this, we examined the aggregate WTP for Alaska, the state 

in which the CIBW exists, and compared it to the estimated $73 million price tag for combined 

federal and state recovery efforts.  At the state-level, we found that some of the estimated models 

and aggregation assumptions led to net benefits being positive.  However, given the CIBW is a 

species protected by the federal government, a national-level market extent is appropriate.  

Under very conservative assumptions about recovery values in other U.S. states, we found that 

expanding the market extent to include additional U.S. states led to positive net benefits for 

CIBW recovery across all the models and aggregation assumptions.  Since there are still 

uncertainties about the drivers of the CIBW decline (Muto et al. 2021), the full cost of recovery 

may change as more is learned.  This study provides evidence of substantial social benefits of 

CIBW recovery that easily exceed the current estimate of recovery costs, which underscores 

evidence of the importance of endangered species protection to the U.S. public and is consistent 

with the finding of net positive benefits at the national level for dozens of other ESA-protected 
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species by Moore et al. (2022). However, we lack the ability to generate a more accurate 

estimate of the national-level WTP for CIBW recovery due to our survey being limited to Alaska 

households and therefore cannot say how much larger the budget for recovery efforts can get 

before the public benefits are surpassed.  Additionally, future work to understand the spatial 

distribution within Alaska and across the U.S. of both the preferences for CIBW recovery and 

who bears the costs of recovery actions (e.g., restrictions on activities in or near critical habitat) 

can aid in assessing distributional effects of species recovery.  
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Table 1. Characteristics of the sample and population 
Sample  Alaska** 

Variable  Description (n=1,316)  

Gender % male 51.7 52.2 

 Full-time workers % of sample working full-
time 

47.7 46.4 

Education – HS or % with high school diploma 18.6* 38.4 
less (LOWEDUC)  or equivalent or less 

Education – grad % with at least some graduate 25.2* 8.4 
school+ or professional school 

Ethnicity – white % white/caucasian 81.2* 66.9 

(WHITE) 

Ethnicity – Alaska % Alaska Native or American 16.0 14.1 
Native/Am. Indian Indian 

Home ownership % owning own 
home/residence 

79.7* 63.8 

Age Median age (years) 53.2*   35-44*** 

 Income  Median household income ($) 70,000 70,760 

Confidence Mean score (on 5-point scale) 3.5 n/a 
(CONF)  with 1 = not at all confident 

and 5 = extremely confident 
in choice experiment 
responses 

Response Mean of deviation of -0.0083 n/a 
propensity predicted individual response 

 deviation (RPDEV) propensity from mean 
propensity 

*Sample estimate is statistically different from the population level at the 5% 
level.  

**2009-2013 American Community Survey 5-year estimate.  See 
https://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t. 

***Median age category 
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Parameter 

MXL-Base 
Estimate Std error 

MXL-Adj 
Estimate Std error 

MXL-Sbias 
Estimate Std error 

MXL-Demo 
Estimate Std Error 

Mean parameter 
Status quo (SQ) 

 SQ×RPDEV
ln(RR+1) 
  ×LOWEDUC 
THR 
  ×LOWEDUC 
REC 
  ×LOWEDUC 

×RPDEV 

        
-1.6303 

0.8814 

0.3703 

0.7255 

0.2952*** 

0.1810*** 

0.1246*** 

0.2354*** 

-3.3005 

4.1079 

0.5095 

1.1721 

0.3692*** 

0.7194*** 

0.1998** 

0.4195*** 

-3.4625 

3.8949 

0.5511 

1.1771 

0.3943*** 
3.1368** 
0.6842*** 

0.2124*** 

0.4406*** 

3.5400** 

-2.6925 
  
2.524 

0.856 

1.233 

  

0.6010*** 

0.4214*** 
0.5401*** 
0.3122** 
0.5744** 
0.5532* 
0.9455 

COST (=ln(γ)) 
DISC (ln(r)) 

-3.4155 
1.7636 

0.0940*** 
0.6974** 

-2.9976 
1.4937 

0.1088*** 
0.4283*** 

-2.9733 
1.4562 

0.1098*** 
0.4116*** 

-2.8122 
1.8685 

0.1172*** 
0.6058*** 

ANA_RR  
ANA_STAT 
CONF13 (υ13) 
CONF4 (υ4) 

  
 
  

  

  
 

  
 -7.3831 

0.169 
7.8925 
-0.5522 
-0.2686 

0.135 
328.4203 
0.0978*** 
0.1039*** 

0.2709 
3.6594 
-0.58 
-0.2883 

0.1433* 
4.7143 
0.1006*** 
0.1071*** 

1.6278 
11.593 
-0.7996 
-0.4722 

0.2882*** 
18100.82 
0.1075*** 
0.1117*** 

Mean log-
likelihood value 
Likelihood ratio 
index (LRI) 
AIC 
BIC 

-4.50205 

0.3718 

11881.4 
11964.3 -4.47925 -4.4742 

 

 

 
 -4.4650

Note: *, **, and *** denote statistically different from zero at the 10, 5, and 1% levels, respectively.  Estimation sample based on 
0.3750 0.3757 0.3770  responses from 1,316 respondents (four CE questions each).  Estimated Choleski matrix parameters reported in Appendix Table A2. 

Table 2. Model results for MXL-Base, MXL-Adj, MXL-Sbias, and MXL-Demo models  

-2.058 

-1.063 

0.2457 

-8.0118 

11829.4 11820.0 11797.8 
11933.0 11934.0 11917.0 
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   Full recovery Marginal value of extinction risk   Marginal value of THR  Marginal value of REC 
reduction 

Model Lower Mean Upper Lower Mean Upper Lower Mean Upper Lower Mean Upper 
bound bound bound bound bound bound bound bound 

 MXL-Base 112.14 227.98   338.89  36.25  55.66 76.44 14.17 35.10 56.28 -97.05 -33.37 24.76 

 MXL-Adj 295.24 408.70   520.21  64.85  87.92 112.64  0.00 15.07 46.75 -51.54 -2.96 38.51 

MXL-Sbias   280.15  394.56  510.94 62.30 84.09   106.85  0.25 26.20   49.55  -52.51  0.23  48.33 

 MXL-Demo 117.01 221.24   322.03  29.24  49.39 68.14  0.00 10.43 39.02 -70.19 -12.01 25.09 

 
 

Model/Aggregation assumption Full population 
(POP) sample response 

 rate 
MXL-Base 57.4  19.2 

(28.2, 83.4) (9.5, 28.6) 
 

MXL-Adj 103.0 34.5 
(74.4, 131.0) (24.9, 43.9) 

 
MXL-Sbias 99.4 N/A 

(70.6, 128.7) 
 

MXL-Demo 55.7 N/A 
(29.5, 81.1) 

POP × estimation 

Table 3. Household-level welfare estimates ($/household) for full recovery and marginal values 

Note: Lower and upper bounds are for 95% confidence intervals of the mean WTP calculated using the Krinsky-Robb simulation 
method with 1,000 iterations. All values are in 2013 dollars. 

Table 4. Aggregate welfare estimates (in millions of 2013 dollars) for full recovery under different aggregation assumptions (MXL-
all model only) 

Note: Lower and upper bounds are for 95% confidence intervals of the aggregate WTP calculated using the Krinsky-Robb simulation 
method with 1,000 iterations.  
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Figure 1. Flowchart of assumptions about the sample and population that contribute to the construction of aggregate willingness-to-
pay (WTP) estimates.  POP = population size, N = contacted sample, n = respondent sample, N-n = non-respondents, PP = population 
proportion for which sample-based WTP is representative. 

36 



 

 
Figure 2. Cumulative U.S. aggregate present value of WTP for recovery (and 95% confidence intervals) calculated under the 
conservative assumption that non-Alaska states have 1% of households with a WTP equal to the mean WTP for Alaska, with all other 
households having a zero WTP.  Aggregate values are presented using the MXL-Demo Model (blue line) and the MXL-Adj Model 
(yellow line). The green line indicates the total present value of recovery costs. 
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APPENDIX 

Symmetric Triangular Distribution 

Our utility specifications allow for symmetric positively-constrained triangular distributed cost 
parameters.  The symmetric triangular distribution is described in Hensher and Greene (2003).  The 
more general triangular distribution (asymmetric triangular distribution) is presented in Dekker 
(2016). Figure A.1 shows the density function, which increases from 0 to c, then decreases 
thereafter until b.  The density is zero for values at or below zero, as well as at and above b.  The 
center of the distribution (c) equals b/2 and is both the mean and mode.  The standard deviation is

√
.  The distribution is defined by a single hyperparameter, b (or alternatively c). 

For the maximum simulated likelihood procedure, symmetric positively-constrained triangular 
distributed cost parameters are drawn as follows:  First, we draw R standard uniformly-distributed 
Sobol quasi-random draws, u = u1, u2,...,uR. Second, for the rth draw the random triangular 

 
distributed variate (r) is calculated as r = 𝑢 ⋅  when ur < 0.5 and r = 𝑏  1 𝑢  ⋅ 

 

when ur ≥ 0.5. For estimation, we estimate  = ln(b), such that b = exp(). 

Figure A1.  Symmetric positively-constrained triangular distribution.   

An Approximately Normal Confidence Interval (CI)-based Test 

We use a simple confidence interval (CI)-based test for testing for statistical differences between 
the means of two empirical willingness-to-pay distributions calculated using the Krinsky-Robb 

38 



 

simulation approach (Krinsky and Robb 1986), as an alternative to the computationally-intensive 
method of convolutions-based approach (Poe et al. 2005) or to the Delta method.  Poe, Severance-
Lossin, and Welsh (1994) showed that assessing whether there is a statistical difference between 
means  𝑋 and 𝑌 by determining if the (1- α)% confidence intervals for them do not overlap leads to 
an overly conservative test at a level of significance less than α. In fact, they show that under the 
null hypothesis of no difference and assuming equal variances, one can show that the non-
overlapping confidence intervals assumes a critical value of (2×Zα/2/sqrt(2)), where Zα/2 is the Z 
value evaluated at α/2. We extend this intuition to assess the statistical difference by deriving the 
distance between means that is consistent with the level of α desired for the test. Recall that for a 
normally distributed variable X a (1-α)% CI for sample mean 𝑋 with a population mean of μ, 
standard deviation of σx and sample size n is 
 

𝑋  ± Zα/2  ∙ σx/√𝑛.        (A.1) 
 
Note that we are comparing mean welfare estimates from different models or different welfare 
scenarios, so the sample size (n = number of K-R mean WTP values) is the same but the standard 
deviations will differ.  The (1-α)% CI for the difference between two sample means, 𝑋 and 𝑌, when 
the sample size is the same but the standard deviations differ is 
 

 
   

(𝑋   𝑌) ± Zα/2  ∙    . (A.2) 
 

 
Testing for the statistical difference in means implies the test statistic: 
 

Z = 
 

  =  Z~N(0,1)  . (A.3)
   
       

 

 

The critical distance between means associated with an alpha of α is D = Zα/2  ∙  𝜎  𝜎 . 

Normalizing this reveals the critical normalized distance, Z = , which under the null
 

hypothesis is distributed standard normal.  Thus, if we want a test that has a level of significance of 
α = 0.05, then we want to have the critical normalized distance Z = 1.96.  To ensure this, we can 
find a value for D that results in a Z = Zα/2. The general solution to this distance (D0) is D0 = Zα/2 × 

𝜎  𝜎 . Given this, the test is implemented in two steps: 

 

1.  For the desired alpha level, calculate D0 = Z/2   𝜎  𝜎 . This is the critical distance 

between the means that is consistent with the alpha level.  If the means are further apart than 
D0 then we reject the null hypothesis of equal means.  If they are closer, we cannot reject the 
null hypothesis. 
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2.  We then compare the distance between the lowest bound of either (1-α)% CI bound for 𝑋  
and  𝑌 and the highest bound of the (1-α)% CI’s (i.e., the max range of the union of the two 
CIs). Define this distance as Dmax. 

a.  If Dmax > D0 + Z/2  (𝜎  + 𝜎  ), then this is equivalent to the critical distance 

between means being exceeded and we reject the null hypothesis.   
b.  If Dmax   D0 + Z/2  (𝜎  + 𝜎  ), then we cannot reject the null hypothesis.  

 
This approach assumes normality of the empirical mean WTP distributions, so it is very similar to 
the delta method but instead of starting with the estimated function (in this case the utility function), 
we start with the empirical distribution of the parameter (here WTP) of interest.  
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Table A1. Response propensity (sample selection) model 

Parameter Estimate Std err 

Constant -0.0391  0.0362  
PO Box address -0.4582  0.0775***  
High rise residence -0.4078  0.1104***  
Adjacent to Cook Inlet 0.1394 0.0712** 
One adult in household  -0.2101  0.0701**  
Low income (<$30K)  0.0399  0.0779  
High income (≥$150K)  0.1122  0.0756  

   

Mean Log-Likelihood  -0.6763   
LRI 0.0243   
AIC 5307.93   
BIC 5351.84   

N 3914    

 

Notes: *, **, and *** denote statistically different from zero at the 10, 5, and 1% levels, 
respectively. All non-constant parameters are associated with dummy variables.  Data are compiled 
from Census data by Ipsos.  The logit model estimates the probability of responding to the survey.  
Individual-level predicted values are calculated and used to form a response propensity deviation 
that enters the sample selection bias-corrected model (MXL-Sbias) as a covariate interacted with 
utility parameters. 
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Table A2. Estimated Choleski matrix parameters from MXL-Base, MXL-Adj, MXL-Sbias, and MXL-Demo models 
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MXL-Base MXL-Adj MXL-Sbias MXL-Demo 

Parameter Estimate Std error Estimate Std error Estimate Std error Estimate Std Error 

SD(SQ) 5.2114 0.3887*** 4.2339 0.4484*** 4.2111 0.4602*** 9.500 1.1233*** 

Chol(SQ,RR) 2.6214 0.2492*** 2.3797 0.5675*** 1.2629 0.5628** 5.908 0.6718*** 

SD(ln(RR+1)) 2.4938 0.1210*** 8.9061 1.2092*** 8.5629 1.1210*** 4.440 0.5222*** 

Chol(SQ,THR) 0.0505 0.2604 0.9 0.3505** 1.1245 0.3946*** 0.513 0.4747 

Chol(RR,THR) 0.0832 0.1746 1.2913 0.9158 1.4377 0.8966 0.210 0.4412 

SDTHR 1.9297 0.2087*** 2.9439 0.3885*** 3.08 0.4085*** -3.331 0.6262*** 

Chol(SQ,REC) 1.244 0.3884*** 2.3777 0.6372*** 2.619 0.6956*** 3.059 1.0605*** 

Chol(RR,REC) 0.4714 0.3144 4.1943 1.7120** 4.6283 1.6710*** 0.892 0.8712 

Chol(THR,REC) 1.3322 0.4119*** 2.1434 0.5343*** 2.0737 0.5849*** -2.159 0.9979** 

SDREC 1.701 0.2930*** 1.8809 0.4299*** 1.8663 0.4589*** -2.647 0.6943*** 



 

 
 Q12 Here is the current program with two alternatives.  Which alternative do you most prefer and which alternative do you 

least prefer? Please indicate your responses below the table. 
 

 

 

 

  

  

 

    

  
 

  
 

  
 

 

 

     

 

 

 

 

 

 

 

 

 

 

  

 

 
  

 
  

 

Population status in 50 
years…..... 
(endangered now) 

Risk of extinction by the year 
2112…………………………….. 
(25% now) 

Added cost to your household 
(one-time payment)…………... 

Which alternative do you 
prefer the most? “X” only one 
box 

Which alternative do you 
prefer the least? “X” only one 
box 

Alternative A Alternative B 
Current 
program 

Endangered Threatened 

25% 15% 

$0 $40 

Alternative A 

□ 

Alternative B 

□ 

□ □ 

Alternative C 

Threatened 

10% 

$50 

Alternative C 

□ 

□ 

Figure A2. Example of choice experime  nt question (Pay1 survey version) 
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Figure A3. Response certainty question. 
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